Not really....
Behaviour of Torsen differentials
The Torsen differential works just like a conventional
differential, but can lock up if a torque imbalance occurs, the maximum ratio of torque imbalance being defined by the Torque Bias Ratio (TBR).
[2] When a Torsen has a 3:1 TBR, that means that one side of the differential can handle up to 75% while the other side would have to only handle 25% of applied torque. During acceleration under asymmetric
traction conditions, so long as the higher traction side can handle the higher percentage of applied torque, no relative
wheelspin will occur. When the traction difference exceeds the TBR, the slower output side of the differential receives the tractive torque of the faster wheel multiplied by the TBR; any extra torque remaining from applied torque contributes to the
angular acceleration of the faster output side of the differential.
The TBR should not be confused with the uneven torque-split feature in the planetary-type Torsen III. The planetary gearset allows a Torsen III center differential to distribute torque unevenly between front and rear axles during normal (full traction) operation without inducing wind-up in the drivetrain. This feature is independent of the Torque Bias Ratio.
Torsens in front and/or rear axles
When a vehicle is in a turn, the outer wheel will rotate faster than the inner wheel. Friction in the differential will oppose motion, and that will work to
slow the faster side and
speed up the slower/inner side. This leads to asymmetric torque distributions in drive wheels, matching the TBR. Cornering in this manner will reduce the torque applied to the outer tire, leading to possibly greater cornering power, unless the inner wheel is overpowered (which is easier to do than with an open differential). When the inner tire (which has less traction due to weight transfer from lateral acceleration) is overpowered, it angularly accelerates up to the outer wheel speed (small percent wheel spin) and the differential locks, and if the traction difference does not exceed the TBR, the outer wheel will then have a higher torque applied to it. If the traction difference exceeds the TBR, the outer tire gets the tractive torque of the inner wheel multiplied by the TBR, and the remaining applied torque to the differential contributes to wheel spin up.
When a Torsen differential is employed, the slower-moving wheel always receives more torque than the faster-moving wheel. The Torsen T-2R RaceMaster is the only Torsen to have a preload
clutch. So, even if a wheel is airborne, torque is applied to the other side.
If one wheel were raised in the air, the regular Torsen units would act like an open differential, and no torque would be transferred to the other wheel. This is where the parking brake "trick" can help out. If the parking brake is applied, assuming that the parking brake applies even resistance to each side, then the drag to the airborne side is "multiplied" through the differential, and TBR times the drag torque is applied to the other side. So, the ground side would see (TBR X drag torque) minus drag torque, and that may restore motion either forward or in reverse. In Hummer/
HMMWV applications, there are both front and rear Torsen differentials, so the use of the main brakes will operate this "trick" on both axles simultaneously.